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Diffusion tensor mapping with MRI can noninvasively track
neural connectivity and has great potential for neural scientific
research and clinical applications. For each diffusion tensor im-
aging (DTI) data acquisition scheme, the diffusion tensor is related
to the measured apparent diffusion coefficients (ADC) by a trans-
formation matrix. With theoretical analysis we demonstrate that
the noise performance of a DTI scheme is dependent on the
condition number of the transformation matrix. To test the theo-
retical framework, we compared the noise performances of differ-
ent DTI schemes using Monte-Carlo computer simulations and
experimental DTl measurements. Both the simulation and the
experimental results confirmed that the noise performances of
different DTI schemes are significantly correlated with the condi-
tion number of the associated transformation matrices. We there-
fore applied numerical algorithms to optimize a DTI scheme by
minimizing the condition number, hence improving the robustness
to experimental noise. In the determination of anisotropic diffu-
sion tensors with different orientations, MRI data acquisitions
using a single optimum b value based on the mean diffusivity can
produce ADC maps with regional differences in noise level. This
will give rise to rotational variances of eigenvalues and anisotropy
when diffusion tensor mapping is performed using a DTI scheme
with a limited number of diffusion-weighting gradient directions.
To reduce this type of artifact, a DTI scheme with not only a small
condition number but also a large number of evenly distributed
diffusion-weighting gradients in 3D is preferable. © 2000 Academic
Press

Key Words: diffusion tensor imaging; optimization; noise; con-
dition number.

INTRODUCTION

formation about both the direction and the magnitude of re
striction, and several quantitative and absolute measures car
determined and mapped, such as the mean apparent diffus
coefficient (mean ADC, trace/3) and the degree of anisotroj
(e.g., fractional anisotropy, FA).

Diffusion tensor imaging has great potential as a tool fc
neurological research and clinical applications. Water protc
diffusion anisotropy abnormalities have been reported in
variety of disorders: strokeb), schizophrenia®, 8), alcohol-
ism (9), developmental dyslexial(), and multiple sclerosis
(11, 12, as well as in normal brain development in the new
born (13, 14. In addition, recent studies have demonstrated tt
capability to automatically track white matter tracts using th
information contained in the direction of the principal diffu-
sivity (15-17. However, a number of technical challenge:
remain in the optimization of diffusion tensor imaging. Con
structing the diffusion tensor requires the acquisition of a seri
of diffusion-weighted images (DWIs) with diffusion sensitiza-
tion along a set of six or more noncollinear gradient direction:
We refer to such a set of diffusion-weighting gradients as
DTI scheme, and we will focus on the optimization and per
formance of different DTI schemes.

Processing of the DTI data entails three steps: (a) detern
nation of six independent diffusion tensor elements in th
laboratory frame from the DWIs; (b) evaluation of eigenvalue
(A1, Az Ag) and eigenvectors of the diffusion tenddy and 3)
calculation of diffusion anisotropy indices defined in terms ©
rotationally invariant eigenvalues and eigenvectors. Sinc
DWiIs typically have low signal-to-noise ratio (SNR), it is
essential to minimize the noise propagation from the initie
data acquisition to the final step of the procedure in order-

Diffusion tensor imaging (DTI) is an exciting new techniquebtain accurate anisotropy indices. While the error propag
(1-5) for the assessment of white matter structural integrity aridns in each individual step of the DTI data processing hay

connectivity. The diffusion of water molecules in brain tiss

ubeen studied extensivelit (5, 18-22, the noise performance

is significantly hindered by the presence of cell membraned,different DTI schemes used for the data acquisition has n
myelin sheaths surrounding axons, and other structures. Thibéen systematically investigated. There is currently no quan

particularly true in white matter tracts where diffusion paral

lghtive and objective measure of noise sensitivity and robustne

to axons and myelin bundles is three to five times faster théor DTl schemes.

diffusion perpendicular to the axons, renderingvivo water
diffusion highly anisotropic. The diffusion tensor contains i
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A number of data acquisition strategie$, 15, 20, 23-3)L
nhave been proposed based largely on a matter of conveniel
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for the geometrical description of the gradient directions or lations and experimental MRl measurements. Both the sim
terms of gradient hardware efficiency, but their noise perfdation and the experimental results demonstrate that the no
mance is not well characterized. The methods from the litenaerformance of a DTI scheme is significantly correlated wit
ture that we have investigated are as follows: the condition number of the associated transformation mat

o c

1. tetrahedral, which is based on the tetrahg dr?" methO%lsn addition to the choice of gradient directions, the ratio o
suggested by Conturet al. (20) and extended to six diffusion the number of images withouS() and with (,) diffusion
directions by addition of thexy and xz directions (Table 1, 9

. . . . . o radients is of importance and has been a subject of discuss
scheme 1). Strictly speaking, this gradient configuration is n . . .

) L 4, 34, 35. For isotropic samples or measurements of a sing
tetrahedral but is termed such here for simplicity;

i . . : ; ADC value @34, 39, a ratio of 1:3.6 appears to be optimal
2. dual-gradient, which always applies gradieistsq0, 33 whereas a ratio of 1:5.6 was shown to be optimal for anisotri
along two of the scanner axes simultaneously (Table 1, scheme .
5); pic samples by Jone= al. (24). In this study, we have focused

. the effect of diffusion directions, and we have therefor
3. decahedral, which was suggested by Skare and Norcg_ﬂlosen a ratio of 1:6, which is close to the optimal 1:5.6, for a

(27) and is a combination of th-e tetrahedral and dual-gradleBtl_I schemes in order to obtain a fair comparison betwee
schemes (Table 1, scheme 3); schemes

4. Jones’ nonisotropic 28) gradient scheme (Table 1,
scheme 4);

5. tetraorthogonall), which is a combination of the tet-
rahedral method and the three orthogonal axes (Table
scheme 12);

6. the method suggested by Papadaikial. (26), based on  For a pulsed gradient spin-echo MRI experiment with a
minimization of an “index of the DTl scheme” that is sug-appropriate pulse sequence designed to eliminate imaging g
gested as a quantitative estimate of the independent diffusiient “cross-talk” effects36), extending the Stejskal-Tanner
directions (Table 1, scheme 9); (33) equation in three dimensions and accounting for diffusio

7. the icosahedron scheme suggested by Muthupatilal. anisotropy, the MRI signal intensitys;, observed experimen
(25), in which a “figure of merit for sensitivity” based on thetally is described as
angles between the diffusion direction and fiber axis is de-
scribed (Table 1, scheme 11); S = Syexp(—bgT-D - gy, [1]

8. and finally Jones6, Jones10, Jones20, and Jones30, which
are variations of the DTI scheme suggested by Jehak (24)
with increasing numbers of diffusion directions. Jomtsal.
applied the theory behind electrostatic repulsion forces to ¢
culate “optimal” gradient configurations. Using a downhil
simplex method32), the optimal configuration dil rods with
positive unit charges on each end (corresponding toNhe 5 (Dxx Dy Dx:)

THEORY

T]fansformation Matrix for a DTI Acquisition Scheme

whereS, is the signal intensity in the absence of any diffusion
V\f_eighting gradientD is the representation of the diffusion
ensor in the laboratory frame,

diffusion directions) is determined by minimizing the sum of Dyy Dyy Dy, (2]
the force between every possible pair of charges (Table 1, Dy. Dy. D
scheme 6, 7, 8, 10).
i . ) .. andg = (gx 9y O)' is the unit column vector of the
Only the first flve schemes mentioned above are ',nt“'t've!}fffusion-weighting gradient specifying the gradient orienta
gnderstandgple in terms ®fy, andz, but all sphemes mclud.- tion in the laboratory frame. The scalawalue is a function of
ing two additional schemes developed for this study (describg(), magnitude and timing of the diffusion-weighting gradient

under Methods) are listed in Table 1. For example, a pair of rectangular diffusion-weighting gradier

In this study, the noise'propagation characterisfcics of D Lises with amplitud&, durationd, and separation interval of
schemes are analyzed using the fundamental Stejskal-Ta ?/feldsb = 425%(A — 8/3)G? (y s the proton gyromagnetic

quation ,33) (.:haracteri.zing the MRI signal in diffus3i0n'ratio). Introducing the following six-dimensional vectors,
weighted imaging experiments. We demonstrate that the noise

sensitivity of a DTI scheme is determined by the condition

number of the transformation matrix relating the diffusion X = (d; d d3 dy ds ds) " = (D Dy Do, Dy Dy D)y
tensor elements to the measured ADC. For the first time, [3]
numerical algorithms based on minimization of the condition

number are proposed to find new DTI schemes. The theoretiécnlfj

framework is tested by systematic comparison with noise per-

formance of different DTI schemes using Monte-Carlo simu- a; = (9% 9% 9% 20,8y 20iGiz 29,9 T [4]
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TABLE 1
A List of Diffusion Schemes Investigated in This Work

1. Tetrahedral

0.000 0.000 0.000
0.577 0.577 0.577
-0.577 -0.577 0.577
0.577 -0.577 -0.577
-0.577 0.577 -0.577
0.707 0.707 0.000
0.707 0.000 0.707
5. Dual gradient
0.000 0.000 0.000
0.707 0.707 0.000
0.707 0.000 0.707
0.000 0.707 0.707
0.707 —-0.707 0.000
0.707 0.000 -0.707
0.000 0.707 —0.707
9. Papadakis
0.000 0.000 0.000
0.000 0.000 0.000
0.755 0.260 0.602
0.024 —0.341 0.940
0.212 0.849 0.485
—0.479 0.711 0.515
—0.394 —0.630 0.669
—0.616 0.261 0.743
0.558 —0.740 0.375
—0.954 —0.067 0.292
0.862 —0.402 0.309
0.230 0.207 0.951
—0.788 —-0.615 0.035
—0.035 —0.990 0.139
11. Muthupallai
0.000 0.000 0.000
0.851 0.526 0.000
0.000 0.851 0.526
0.526 0.000 0.851
0.851 —0.526 0.000
0.000 0.851 —0.526
—0.526 0.000 0.851

0.000

0.755
—0.479
—0.394
—0.616

0.558
—0.954

0.000
0.000
1.000
0.678
—0.556
0.672
—0.012
—0.680
—0.045
—0.024
0.458
0.658

0.000
1.000
0.446
0.447
0.448
0.447
—0.449

0.000
0.577
-0.577
0.577
—0.577
1.000
0.000
0.000

2. Cond6
0.000
0.260

0.711

—0.630

0.262
—-0.741
—0.067

6. JonedN(= 10)
0.000
0.000
0.000
0.735

0.504
—0.733
—-0.801
—0.310
—-0.011

0.966

0.521
—0.250

10. JoneN (= 6)

0.000

0.000

0.895

0.275
-0.723
—-0.724
—-0.277

12. Tetraortho
0.000
0.577
-0.577
—-0.577
0.577
0.000
1.000
0.000

0.000
0.602
0.515
0.669
0.743
0.375
0.292

0.000
0.000
0.000
0.000
0.661
0.106
0.598
0.664
0.999
0.257
0.721
0.710

0.000
0.000

0.000
0.851

—0.525

0.526
0.850

0.000
0.577
0.577

—0.577
-0.577

0.000
0.000
1.000

3. Decahedral 4. Jones noniso

0.000 0.000 0.000 0.000 0.000 0.C
0.000 0.000 0.000 1.000 0.000 0.C
0.577 0.577 0.577 0.000 1.000 0.00
-0.577  —0.577 0.577 0.000 0.000 1.000
0577 -0577  —0.577 0.707 0.707 0.000
~0.577 0577  —0.577 0.707 0.000 0.707
0.707 0.707 0.000 0.000 0.707 0.707
0.707 0.000 0.707 0.577 0.577 0.577
0.000 0.707 0.707
0.707  —0.707 0.000
0.707 0.000  —0.707
0.000 0.707 —0.707
8. Jors 30)
7. Jonehl (= 20) 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.00(
0.000 0.000 0.000 0.000 0.000 0.00(
0.000 0.000 0.000 0.000 0.000 0.00(
1.000 0.000 0.000 0.000 0.000 0.00(
0.336 0.942 0.000 1.000 0.000 0.00
~0.405 0.606 0.685 0.166 0.986 0.000
0.825 —0513 —0.236  —0.110 0.664 0.740
0.006 —0.363 0.932 0.901 -0.419  —0.110
-0.811  —0.287 0510 -0.169  —0.601 0.781
0.852 —0.320 0.414 -0.815  —0.386 0.433
~0.240 0.959 0.149 0.656 0.366 0.660
0.835 0.272 0.478 0.582 0.800 0.1
0.009 —0.904 0.427 0.900 0.259 0.350
-0.063 —0.812  —0.580 0.693  —0.698 0.178
-0.269  —0.390  —0.881 0.357 —0.924  —0.140
—0.422  —0.624 0.658 0543 —0.488  —0.683
~0.601 0779  -0177  -0525  —0.396 0.753
~0.516 0.086 -0.852  —0.639 0.689 0.341
—0.790  —0.607 0.087 —0.330 —0.013 —0.944
0729 -0.181  -0.661 —-0524  —0.783 0.335
0.265  —0.096  —0.960 0.609 —0.065  —0.791
-0561  —0.701  —0.440 0.220 —0.233  —0.947
—0.405 0.631 —0.662 —0.004 —0910 —0.415
-0.511 0.627  —0.589
0.414 0.737 0.535
—0.679 0139  —0.721
13. DSM & 6) 0.884  —0.296 0.362
0.000 0.000 0.000 0.262 0.432 0.8
0.910 0.416 0.000 0.088 0.185 —0.979
0.000 0.910 0.416 0.294 —0.907 0.302
0.416 0.000 0.910 0.887 —0.089  —0.453
0.910 —0.416 0.000 0.257  —0.443 0.859
0.000 0.910 —0.416 0.086 0.867 —0.491
-0.416 0.000 0.910 0.863 0.504 —0.025

Eqg. [1] can be rewritten as

S = Seexpl—baX) or

a™X = In(Sy/S)/b = ADC,.

(5]

measured signal and the noise distribution in ADC is nc
strictly Gaussian at low SNR36, 37. For the simulation
study discussed below, Gaussian distributed noise was
rectly added to the complex signal intensity8( 37). In the
theoretical analysis of noise propagation from ADCX{tono

In Eq. [5] a logarithmic transformation is performed on thassumption is imposed for the noise distribution, and th
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nonlinear transformation introduced in Eq. [5] should havié follows from Egs. [11] and [12] that

no effect on the analytical results. To solve ¥rat least six
independent ADCmeasurements using noncollinear grad

| 1 [AADC| _[AaX] IAADC]|

ents are required. For measurements using a generalized”A””A—l” |ADC] = X = [|AfflA = Jabc]

DTI scheme withN = 6 different gradient directions, we
can define a vector

ADC = (ADC, ADC, - -ADG,)" [6]
and aN X 6 matrix
A= (aya - ay'. [7]
We have
A X = ADC. (8]

Since each DTl scheme contains at least six noncolline??

gradients, the rank of matriA is equal to 6 andX can be

uniquely determined. The matri is solely dependent on the
directions of the diffusion-weighting gradients and is referred]
to as the transformation matrix for the corresponding Dﬁ

scheme.

Error Propagation from ADC Measurements
to Tensor Elements

(13]

The scalar quantitiAl||A™*| is called the condition number of
matrix A (38) and is denoted by condlj. Thus

1 [sADC| _[axX|_ o lsADe]
condA) [ADC] = [X]| = jabe] -

This expression relates the relative error in the diffusion tens
elements,e, = [|[AX]|/||X|, to the relative error in the ADC
measurementgaoc = ||AADC]|/|[ADC]|. If the condition num
ber is close to 1g, will be close toesc. If the condition
number is large, the relative error in the estimated diffusio
tensor elements could be several times larger than the expe
ntal errors iNADC. Thus, condf) depends only on the
irections of diffusion-weighting gradients and can be used
quantitative and objective measure of noise performance fol
ven DTl scheme. For isotropic diffusion, the experimente
rror, eapc, IS the same at a givelm value irrespective of the
irections of the applied diffusion-weighting gradients. Fo
anisotropic diffusiong,pc is likely to vary with the directions
of the applied diffusion-weighting gradients, if we use the
sameb value optimized on the basis of the mean ADC a
normally practiced. Not only the condition number of the

WhenN > 6, Eq. [8] is overdetermined and the pseuddransformation matrix but also the variations @, must be

inverse of the transformation matrik,*, can be computed
using the singular value decomposition algorithmXlifs the
exact solution corresponding to the ex&dC values and

X' is the calculated solution from Eq. [8] corresponding to

taken into consideration in the minimization ef. This point
will be further discussed below.

METHODS

the measuredADC’ values with experimental errors, the

errors forX andADC are AX = |X — X'| and AADC =
|[ADC — ADC’||, respectively. If| - || represents the norm of
a vector or matrix §8), we have

AX =ATAADC, [AX| = [A~F[|laADC]  [9]

|AADC||
AAX = AADC, Al S [AX]. [10]
Therefore,
|AADC|| .
—rar = IIAX[| = [AY|[AADC]. [11]

IA]
By the same reasoning used to derive Eq. [11], we have

IADC|
IA]

= X[l = [A~HlADC]]. (12]

Algorithm to Find New DTI Schemes with Lower
Condition Numbers

Using the condition number of the transformation matrix a
a measure of noise performance, we developed a numeri
algorithm to search for new DTl schemes with lower conditiol
numbers. The essential part of the algorithm consists of
downhill simplex minimization procedure3?) to search for
orientation angles that reduce the condition number. The alg
rithm is initiated by (a)N noncollinear gradient vectors of the
same length in 3D spherical coordinates udihgzimuth and
elevation angle pairs (i.e.Nedimensions) and (b) a simplex of
2N + 1 dimensions of a certain size. The transformatio
matrix and its corresponding condition number were then ce
culated according to their definitions. The iteration wa
stopped when reductions in the conditional number were le
than 10" or when the number of minimization cycles-ex
ceeded 50,000. The latter termination criteria never did occt
Two thousand different initial simplex sizes and different ini
tial gradient vector sets were used, all resulting in the san
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TABLE 2 (18, 31, 40, 41 Orientations of the simulated diffusion tensor
A List of Investigated DTI Schemes and the Condition Numbers  were evenly distributed in the entire 3D space by systema
of Associated Transformation Matrices cally varying the azimuth£180° = 6 = 180°) and elevation

(0° = ¢ = 90°) angles for the principal diffusion tensor

Scheme Literature Condition . . . . . .
number Scheme name reference number  directions. Two hund.red Fjlfferept orientations were simulate
for each degree of diffusion anisotropy.
1 Tetrahedral 20 9.1479 Each simulation involved the recalculation of the eigenva
2 Cond6 ) 5.9888 yes and eigenvectors of a predefined diffusion tensor aff
3 Decahedral A7) 27487 introducing experimental random noise in the diffusion
4 Jones noniso 28 29618 \veighted images. The random noise w. med to be Gal
5 Dual-gradient g, 30, 3) 20000 Welghtedimages. 1he random noise was assumed o be
6 Jones10 2, 24 1.6242 ian distributed with a standard deviation= 1/SNR. We used
7 Jones20 23,29 1.6152  SNR = 15 for all simulations, which corresponds to a typica
8 Jones30 43,24 15945 experimental value.
9 Papadakis 26 1.5872 For each degree of anisotropy and orientation the followin
10 Jones6 49 1.5826 rocedures wer rformed: (i) The diffusion tensor represe
11 Muthupallai 25 15811  Procedures were performe : (i) The diffusion tenso epre
12 Tetraortho 15 15275 tation, D, in the laboratory frame was calculated using th
13 DSM @9 1.3228 predefined diffusion anisotropy and tensor orientation angle

(i) ADC; values along each gradient direction defined by
particular DTl scheme were determined from the diffusiol
- . L tensor D) and the transformation matrixA) associated with

optimized condition number. Optimization was performed f%e scheme according to Eq. [8]. (i) DWI signal intensitiss,

N =6, 10 ?O’ .30’ and_40. . . . andS,, were computed from the known AD@ndb values
The minimization algorithm was computationally mtenswe.b = 0 and 900 s/mA). (iv) Gaussian-distributed random

TO. |mpr0\;e eﬁf'?g\?y the. allggnthm was lmgplerrzﬁntetcri] N Moise was added to the complex MRI signals. (v) Noise
using routines fromNumerical Recipes in 39) rather than perturbed signal intensities were used to recalculate the no

using the built-in optimization toolbox in MATLAB (The contaminated ADC values from which the diffusion tensor, it

xlathV\I/Eorks, I'nc.).z'sl'ge computgtlonlsvlyvere pte rform(:/ld ont "’g?genvalues, and eigenvectors were recalculated. (vi) Fre
ltra_Enterprise server (Sun Microsys ems, Voumayqa anisotropy was evaluated according to its definition,
View, CA). The schemes that were found by this downhi

simplex minimization are referred to as DSM schemes.

3 Ei=l,2,3 (/\I - X)Z
. . FA= /5 —, [15]
Monte-Carlo Simulations of DTl Schemes 2 Dic123A]

In order to verify the theoretical relationship between the ) ) o
noise performance and condition number of the transformatigiind the noise-perturbed eigenvalues of the diffusion tens
matrix (Eq. [14]), 13 different DTI schemes were investigate§n® mathematical details of the above procedures are the s
by Monte-Carlo simulations for different degrees of diffusioS those described previouslyg|. For ea}lch combination of
anisotropy and tensor orientations. Besides the DTI schenfiSOtropy, orientation, and DTI scheme" I8peated calcuta
found in the literatured, 15, 20, 23-3), the optimized DSM {ions were performed using MATLAB. ,
schemes discussed above and another artificially constructegtatistical analysis of the simulation results included evalt
scheme (referred to as cond6) with condition number 6 weqtion of the standarpl deviation of 'the fraqtlonal anisotrop
included in the simulations to cover a wide range of conditiorh: 18, o(FA), and bias of the fractional anisotropfAFA),
numbers. The gradient configuration, condition number, af§cording to
literature references for each DTI scheme are listed in Tables
1 and 2, sorted according to descending condition number. As y (FA } i S FA) 2
shown in Table 2, most of the schemes have relatively small i=1 Y el
condition numbers whereas the tetrahedral scheme (scheme 1) a(FA) = M= 1 (16]
has the highest condition nhumber.

In all simulations, a “rice-shaped” diffusion tensor ellipsoid 1M
was assumed such that the tensor possessed axial symmetry (AFA) = M > (FA — FAexpected s [17]
(A1 = A, = Ay). Four different degrees of anisotropy with ratios i=1
of AJ/A, = 1, 1.25, 4, and 10 were studied, while keeping
XA, = 1. The average eigenvalie= (A, + A, + A;)/3was where M is the number of repeated measurements using
set equal to 1.0x 107° m?/s for all simulations, a value given DTI scheme and FAs the fractional anisotropy value
comparable to the mean ADC in normal brain parenchynaetermined in each measurement. The bias is defined as
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difference in fractional anisotropy between the noise-free and TABLE 3
noise-contaminated FA. The average standard deviation arMdRI Data Acquisition Parameters Used for the Phantom and
bias over different degrees of diffusion anisotropy and orien- Human Studies
tation angles were calculated for each DTI scheme.
DTI Number of Sy Measurement Total No. of DWI
scheme directions measurements averaging measurements
Phantom Study
MRI measurements were performed in a water phantom toé g i ;8 ﬁg
verify the simulated and theoretical results. In order to elimi- 3 10 2 12 144
nate motion artifacts and match the ADC of the phantom with 4 7 1 18 144
the value of brain ADC, starch was added to the water resulting 5 6 1 20 140
in an ADC of 1.2x 10~° mm?/s. The MRI measurements were ° 10 2 12 144
performed on a GE Signa 1.5-T (GE, Milwaukee, WI) whole- gg 2 2 123
body MRI medical scanner equipped with Echo-Speed gradi- g 10 2 12 144
ents using a diffusion-weighted spin-echo EPI (echo-planaro 6 1 20 140
imaging) sequence. Imaging parameters were TEA 38/ 11 6 1 20 140
1000 ms, FOV= 200 mm, matrix size= 64 X 64, 3-mm slice g g i ;g 133

thickness, and = 800 s/mni.

_ Depepdm_g on the' DTI scheme, a d|ff?rem number of diffu- Note.For each DTI scheme, about the same number of images@) were
sion-weighting gradients was applied simultaneously. ConseHected by adjusting the number of repeated measurements according to
quently, different minimum TE values can be achieved fawumber of diffusion-weighting gradient directions in each scheme.
different DTl schemes using the sarbevalue. However, to

facilitate the comparison between DTI schemBsweighting phantom is zero. Using FAees = 0 in Eq. [17], it is also

effects were kept constant across schemes by using the migssible to calculate the average biasrA), for the phantom.
mum TE that satisfied all schemes.

For diffusion schemes with more than six diffusion-weightduman Study

ing gradient dlrectlpns,l the data acquisition was Ion_ger andFinaIIy, MRI measurements for each DTl scheme wer
usually produced diffusion tensor measurements of higher ac-

. I . pérformed in five healthy volunteers using the same sequer
curacy due to an averaging effect. For quantitative comparison . . .
. " . and MRI scanner described above. One axial slice through t
between the different DTl schemes, additional averaging was : .
. e . _corpus callosum was acquired for each subject. The DWI de
performed for schemes with a lower number of diffusion ™~ . =
. . acquisition parameters were T&£ 95 ms, FOV= 240 mm,
directions, so the total number of MRl measurements was_, .~ .~ ' . .
. . .matrix size= 128X 128, 4-mm slice thickness, ahd= 1000
approximately the same for all schemes. The ratio of acquisi-

tions atb = 0 andb — 800 s/mnf was kept approximately at 3/mnt. As for the phantom, averaging was performed to kee
the total number of images constant across schemes (Table

1:6. Further details of data acquisition for each scheme A€ reduce respiratory artifacts, peripheral gating was us

shown in Table 3. for the human study. The data were acquired using a fixe

The standarq deviation in pixg¢lcan be estimated frorvl rigger delay of 400 ms after tHR-peak and TR= 4 X RR. To
repeated sessions according to Eq. [16]. Although the numbe .
P T : - S réduce head motions between the repeated measurements
of diffusion-weighting gradient directions is different for each | . o : . o .
DTI scheme (Table 3), about 140 images per scheme Wsruebjects were stabilized with foam padding fit tightly in the
' ges p ead coil. Eddy current effects in the diffusion-weighted im

collected. To avoid a long data acquisition time (especial . . .
important for the subsequent volunteer study) the experimengg\eS were corrected using the unwarping method described
e Crespigny and Moseley?) prior to calculation of ADC

design outlined in Table 3 was only repeated twibk € 2). maps

To enhance the statistical power, the average valug 6iA) As described for the phantom experiment, the experiment

over all p|?<els in an ROI covering the entire phantom on th(?esign detailed in Table 3 was repeatedly measured in tv
imaged slice was calculated as

separate sessions from which the average standard deviat
(o(FA)), in an ROl encompassing the entire brain (within the

K slice) was calculated. This resulted in a total scan time
(o(FA)) = X oy(FA)IK, [18] approximate} 2 h for each subject. Both the diffusion tensol
i=1 orientation and the degree of diffusion anisotropy at differer

locations of the brain are usually different. The spatially avel
whereK is the number of pixels within the ROI. Here, an ROhged standard deviatigr(FA)) described above reflects the
in the center of the phantom containikKg~ 1000 pixels was average noise performance for each scheme over a wide ra
chosen. Theoretically, the fractional anisotropy of the isotropaf diffusion anisotropy and tensor orientation.
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TABLE 4
Diffusion Gradient Schemes Found by the Optimization of Condition Number Using the Downhill Simplex Method (DSM)
N =26 N = 30 N = 40
0.910 0.416 0.000 0.995 0.079 0.068 0.995 0.078 0.06
0.000 0.910 0.416 0.029 0.995 0.097 0.030 0.995 0.09
0.416 0.000 0.910 —0.128 0.533 0.836 —0.128 0.533 0.836
0.910 —0.416 0.000 0.978 —0.196 0.068 0.978 —0.196 0.067
0.000 0.910 —0.416 —0.085 —0.632 0.770 —0.084 —0.633 0.770
—0.416 0.000 0.910 —0.887 —0.255 0.385 —0.887 —0.256 0.385
0.541 0.486 0.687 0.542 0.486 0.685
N = 10 0.443 0.889 0.121 0.442 0.889 0.121
0.971 0.203 0.125 0.971 0.203 0.124
0.997 0.047 —0.063 0.459 —0.887 0.051 0.459 —0.887 0.052
0.479 0.842 0.248 0.389 —0.912 —0.132 0.390 —0.911 —0.132
—0.299 0.549 0.780 0.602 —0.510 —0.614 0.602 —0.511 —0.614
0.716 —0.698 0.028 —0.287 —0.417 0.863 —0.288 —0.417 0.862
0.001 —0.864 0.504 —0.807 0.566 0.166 —0.807 0.566 0.168
—0.805 —0.230 0.547 —0.162 —0.209 —0.964 —0.162 —0.208 —0.965
—0.026 —0.191 0.981 —0.328 —0.917 0.226 —0.328 —0.917 0.227
—0.003 0.997 0.071 0.552 0.019 —0.834 0.551 0.019 —0.834
0.235 0.058 0.970 0.320 —0.046 —0.946 0.320 —0.048 —0.946
0.897 0.014 0.441 —0.037 —0.982 —0.185 —0.038 —0.982 —0.185
—0.657 0.293 —0.695 —0.657 0.291 —0.695
N = 20 0.362 0.820 0.443 0.361 0.821 0.443
—0.686 0.164 —0.709 —0.685 0.162 —0.710
0.999 —0.013 0.044 0.977 -0.171 0.129 0.977 -0.171 0.130
0.139 0.989 0.048 —0.014 0.229 0.973 —0.013 0.229 0.973
—0.273 0.292 0.917 —0.110 0.260 —0.959 —0.108 0.260 —0.960
0.905 —0.421 —0.049 0.192 —0.921 0.340 0.194 —0.920 0.340
0.063 —0.201 0.977 0.988 0.053 —0.146 0.988 0.053 —0.145
—0.853 —0.268 0.449 0.193 —0.077 0.978 0.193 —0.079 0.978
0.959 —0.054 0.277 0.005 0.961 —0.275 0.005 0.962 —0.275
—0.241 0.961 0.137 0.873 0.459 —0.166 0.873 0.458 —0.167
0.875 0.217 0.433 0.997 0.048 —0.063
—0.043 —0.923 0.382 0.479 0.842 0.248
—0.025 —0.897 —0.442 —0.299 0.549 0.780
—0.224 —0.332 —0.916 0.716 —0.697 0.028
—0.282 —0.639 0.716 0.001 —0.863 0.505
—0.589 0.807 —0.043 —0.804 —0.230 0.548
—0.342 —0.047 —0.938 —0.025 —0.190 0.981
—0.858 —0.512 0.049 —0.003 0.997 0.071
0.796 —0.205 —0.569 0.234 0.059 0.970
0.226 —0.060 —0.972 0.897 0.013 0.441
—0.342 —0.928 —0.151
—0.383 0.586 -0.714

Note. The results are shown for five DSM schemes with number of diffusion encoding direttiens, 10, 20, 30, and 40.

It is important to realize that time and spatial averaging aestimate of the measurement bias for each DTI scheme frc
only equivalent when the system is ergodic and the numbertb& in vivo data.
samples K) is large. In our study, it was not practically
feasible to do a large number of time samplds) (due to
restraints on the total scan time per volunteer. We therefore
rely on using a large number of samples. The number of pixel
inside the brain available for spatial averaging was about 50
(depending on the brain size), which was of the same order ofAll DSM schemes I = 6, 10, 20, 30, and 40) were
magnitude as the number of repeated simulations performedypically obtained in less than 10 min. The condition numbe
the time domain. Since the true fractional anisotropy in ttfer the DSM schemes does not change withbut always
brain is unknownra priori, it is impossible to make a reliablereaches 1.3228, which is close to the ultimate theoretical mi

RESULTS

nimization of Condition Number
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The simulation results demonstrate significantly narrower err

.07!
Z_;i L Simulations, ¢ = 0.997 dispersion ranges for DTl data acquisition schemes wi
smaller condition numbers.
0085 T In addition to the propagation of experimental error, th
g ooor noise-induced biasy is also an important characteristic for the
W o055} 1 performance of a DTI scheme. Similar to the standard devi
© 0.050 [ 1 tion results, the bias of the fractional anisotropy is also signi
0.0450 | . icantly correlated with condition number. This is demonstrate
e for the isotropic case in Fig. 2a, which shows the average bi
0.035 _,'r . of the fractional anisotropy¥AFA), as a function of condition
; : number for the simulated data.
0.030 = = n ‘é S— 10 However, the sta_md_a_rd deviation of the fr_action_al ani_sotropj
: Condition number - - _ o(FA), depe_nds_3|gn|f|_can_tly on th_e relative 0r|e_nta_t|on be
! tween the diffusion-weighting gradient and the principal eig
envector of the diffusion tensor. This is illustrated in Fig. 3
0.038 | which depicts the standard deviation of the fractional aniso
ropy as a function of azimuth and elevation angles of th
0.036 | principal tensor direction for three DTI schemes (Tetrahedre
0.034 a . . ‘ '
0.20 | Simulations, r = 0.992 4
0.032
0.18 | ]
0.030
14 16 18 2 22 24 26 28 y O ]
. B o - . o . % x
FIG. 1. Standard deviation of the fractional anisotropy(FA), as a vV o014} .
function of condition number. For each diffusion tensor imaging scheme, the
simulation results averaged over four different degrees of diffusion anisotropy 012 |
and 200 different tensor orientations are shown. The line denotes the linear
regression analysis af(FA) against the condition number of the associated
transformation matrix for each DTl scheme=£ 0.997 and® < 0.001). To 0.10 ¢ ’
better visualize the data for low condition numbers, the lower plot shows the 2 4 6 8 10
data at another scale. -
Condition number
b
imum of 1. The gradient vectors are listed in Table 4 for each 0.14 ) ) {
N. The gradient configuration fok = 6 is also detailed in Isotropic phantom, r = 0.972
Table 1 together with other schemes found in the literature. 013 '
Varying the starting scheme and the initial conditions had no 0.12
impact on the final result when the iteration steps were suffi- 011
ciently large. Furthermore, results from minimization with ﬁ '
smallerN were always contained in the results with lar¢er v o010
0.09
Simulations
0.08
As expected from Eq. [14], the error propagation of a DTI X
scheme is highly correlated with the condition number of the 0.07 1 % ]
associated transformation matrix &€ 0.997,P < 0.001) 0.06 - - L - o

when all DWIs were acquired using the saimesalue. The
transformation matrix for the tetrahedral scherig) (has the

Condition number

Iargest condition number (9_1479) among the DTI schemesF'G' 2. The bias of the fractional anisotroggFA) in the isotropic water

studied and the correspondingfA) for the scheme is also the
highest. This is demonstrated in Fig. 1, which she{A) as

phantom as a function of condition number. The results from Monte-Car
computer simulations (a) and experimental MRl measurements (b) are sho\
The lines denote the linear regression analysi&&fA) against the condition

a function of condition numbers for different DTI schemesumber of the associated transformation matrix for each DTI scheme.
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Scheme 1, Tetrahedral Scheme 10, Jones (N=6) Scheme 8, Jones (N=30)

FIG. 3. Standard deviation of the fractional anisotropy-A), as a function of tensor orientation for three different DTI schemes. The tetrahedral sche
(a) has a substantially higher condition number. The Jones6 (b) and Jones30 (c) have similar condition numbers but a different number of @jfftisgon-w
gradient directions. FA gives a rotational invariant measure of diffusion anisotropy only when a DTI scheme with a low condition number and aderge |
of diffusion-weighting gradient directions is used.

Jones6, and Jones30). Comparing Figs. 3a and 3b, both diffgtews a representative set of fractional anisotropy maps m¢
ences in the average(FA)) and degree of rotational variancesured in a normal subject using four DTI schemes with signi
are clearly observable between the results for the tetrahedcaintly different condition numbers: tetrahedral (a), DSM (b)
and Jones6 schemes. Only the scheme Jones30 (Fig. 3c) pomes6 (c), and Jones30 (d). Although the total number of DV
duces low and rotational invarianfFA). Comparison of the data acquisitions used for each scheme was nearly identi
DSM schemes with the Jones schemes with the same num(@ee Table 3), the maps from the four schemes show cle
(N) of diffusion-weighting directions reveals that the Jonedifferences in SNR, indicating that the robustness to nois
schemes are still superior in terms of lowering noise and biggopagation is very different for these schemes.

Compared with DTI schemes with condition humbers clos
Phantom Study to 1.5, the tetrahedral scheme has a high condition number

The correlation betweetr(FA)) and the condition number 9._148 and produc_es a much n_oisier fractio_nal anisotropy m
that was demonstrated using simulated results is also evidenffff? POOr resolution. Irrespective of the different degrees
the phantom data (Fig. 4). As the condition number is reduc8iSOtropy between regions of the main corpus callosum strt

from 9.15 for the tetrahedral scheme to 1.32 for the DSM

scheme, the standard deviation of the fractional anisotropy was ooak ) i Y
reduced by a factor of 2. These results agree well with the otooic ohaniom. - 0,667
theoretical prediction that the condition number of the associ-  ggasb o T )

ated transformation matrix sets both the lower and the upper

error limits for the diffusion tensor when the experimental |,  ¢.03} ]
noise level for ADC is constant. <
The correlation of the average fractional anisotropy bias FDV' 0.025} X 4

with the condition number is also verified in the phantom data,
Fig. 2b. The results from simulations (Fig. 2a) and phantom 0.02} 1
measurements (Fig. 2b) are in good agreement, although the
simulation results have a higher correlation coefficient (0.992 0.015
versus 0.972).

2 4 6 8 10
Human Study Condition number

Finally, data from the healthy volunteers show the samerIG. 4. The spatially averaged standard deviation of the fractional aniso
correlation between the average(FA)) and the condition ropy. (o(FA)), versus condition number as measured in an isotropy wat
number as the simulations and the phantom measurements mgntom using different DTl schemes. Results from an ROl in the center of tl

1 ph

- . . ntom containing approximately 1000 voxels are shown. The line shows t
5 (I’ - 0'980)' Thenoise performance of different DTI linear regression analysis @&(FA)) against the condition number of the

schemes can also be qualitatively demonstrated by the quadit¥ociated transformation matrix for each DTI scheme:(0.987 andP <
of anisotropy maps measured using different schemes. Figure ®?1).
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0.08 T T T T ticular, the tetrahedral scheme with the highest condition nur
ber produces the noisiest anisotropy maps.

However, the condition number alone does not fully chal
acterize the robustness of a DTI scheme. For isotropic diff
sion, each ADC is expected to produce the same error irr
spective of the direction of the diffusion-weighting gradients
For anisotropic diffusion, however, ADC measurements usir
the samé value will produce DWIs with SNR values depend-
ing on the relative orientation between the principal directio
0.02f 1 of the diffusion tensor and the diffusion-weighting gradient
Consequently, the errors in the calculated diffusion anisotroj
not only are a function of the condition number but also ar

0.00 2 n S s 10 dependent on the relative orientation between the diffusio
. weighting gradient and the principal eigenvector of the diffu
Condition number . . .
sion tensor. DTI schemes with a large number of uniforml
FIG. 5. The spatially averaged standard deviation of the fractional anisq¥jstributed diffusion-weighting gradients can reduce this typ

ropy, (a(FA)), versus condition number as measured in five normal humag: . is0 indyced rotational variance. Thus, for schemes wi
subjects using different DTI schemes. The average result from all pixels inside

the brain of the imaged slice is shown. The line denotes the linear regress%’lmparable condition number, the number of diffusion direc
analysis of(c(FA)) against the condition number of the associated transfofilONS is also a critical factor. This is very clearly demonstrate
mation matrix for each DTI scheme & 0.980 andP < 0.001). by the comparison between Jones6 (Fig. 3b) and Jones30 (F
3c) schemes. Although the two schemes have an almost id
tical condition number, the noise performance for varyini
tures and cortical gray matter, the entire map has a graiosientations of the diffusion tensor is quite different. A unique
appearance with discontinuous anisotropy variations. of feature of the Jones schemes is that the diffusion-weightil
In contrast, other FA maps showed clearly defined anisgradients are always uniformly distributed in the entire 3I
ropy structure with uniform and smooth anisotropy variationspace irrespective of the total number of diffusion-weightin
Comparing results for schemes with similar condition nungradients used. Schemes with a low number of diffusior
bers, the contrast between the strongly anisotropic white mattegighting gradients cannot produce robust rotation invaria
structures and low anisotropic cortical gray matter is furtheneasurements of eigenvalues and anisotropy in the presenc
enhanced (Figs. 6b—6d) with the increased number of diffexperimental noise. Increasing the number of diffusion-weigh
sion-weighting gradient directions. ing gradient directions as in the Jones30 sche?3 greatly
reduceso(FA) and its dependence on the orientations of th
diffusion ellipsoid.
DISCUSSION For the first time, we show that a numerical algorithm can b
used to optimize DTI schemes based on minimization of tf
In this study the noise performance of different DTl schemesndition number of the transformation matrix. This has th
was investigated by theoretical analysis and experimental vatlvantage of high reliability and efficiency in the design o
idation. Assuming that all DWI acquisitions use a single optDTI experiment. At present, DTl schemes with a conditiol
malb value based on the mean diffusivity, the determination oumber as low as 1.3228 were found and the schemes dem
the diffusion tensor is treated as a system of linear equatiosate good noise behavior compared to other DTl schem
The condition number of the transformation matrix, which iwith low condition numbers. The downhill simplex algorithm
solely dependent on the orientations of the diffusion-weightiritself does not guarantee that the comphexlimensional min-
gradients, defines the lower and upper bounds of the ermmization process will encounter a global minimud2( 39,
propagation from the experimental measurements to the ebtit a few aspects of the minimization result indicate that ot
mated diffusion tensor parameters. We have identified thesultis probably a global minimum: (1) The condition numbe
condition number of a DTI as an intuitive and objective meaf 1.3228 is close to the ultimate theoretical minimum of 1.C
sure of the noise performance for the DTl scheme. A compd®) Restarting the minimization routine using the claimed mir
ison of different DTI schemes found in the literature usingnum vertices does not produce different results. (3) Th
computer simulations and MRI experimental measurememesults from lower dimensional minimization with smalkeis
has demonstrated that both the standard deviation and the biagys contained in the results with lardér(4) The condition
of the estimated anisotropy are proportional to the conditisrumber does not change with Using the minimization of the
number. Commonly used scheme$, 15, 20, 23-3)L differ condition number as a theoretical guide, the necessary con
significantly in noise performance because the associated traitm of robustness to experimental noise can be guaranteed
formation matrices have different condition numbers. In pathe scheme.

0.07 F Volunteers, r = 0.980

0.06

0.05}

0.04

<G(FA)>

0.03

0.01f
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Scheme 1,Tetrahedral Scheme 13, DSM (N=6)
c d

Scheme 10, Jones (N=6) Scheme 8, Jones (N=30)

FIG. 6. A representative set of fractional anisotropy maps measured in a normal subject using four different DTI schemes. The results for the tet
(a), DSM (b), Jones6 (c), and Jones30 (d) schemes are shown. The experimental parameters used for MRl measurementsQberes TER= 4 X RR,
FOV = 240 mm, andb = 1000s/mnt. The spatial resolution was % 1.9 X 1.9 mm. The total number of imaging data acquisitions used for each sche
was about 140 scans.

To our surprise, the DSM schemes were not as robust as thén the search for optimal scheme, a low standard deviatic
Jones schemes in terms of orientation independence. Weaattd bias in the calculated diffusion tensor are prerequisites f
tribute this to a tendency in the optimization algorithm to favahe production of accurate anisotropy maps¥, 18—-22. For
the orthogonal axesx( y, andz) as opposed to a uniform anisotropic diffusion with different diffusion tensor orienta-
distribution in the entire 3D space, which is a unique feature tibns in the same measurement volume, using a singigue
the Jones schemes. It is not clear to us why the optimizatitor multiple directions is likely to produce ADC maps with
algorithm favors the orthogonal axes, but this trend is appareagional differences in experimental noise levél®)(We have
upon visual inspection of the gradient distribution. demonstrated this type of noise-induced rotational varian
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