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Diffusion tensor mapping with MRI can noninvasively track
neural connectivity and has great potential for neural scientific
research and clinical applications. For each diffusion tensor im-
aging (DTI) data acquisition scheme, the diffusion tensor is related
to the measured apparent diffusion coefficients (ADC) by a trans-
formation matrix. With theoretical analysis we demonstrate that
the noise performance of a DTI scheme is dependent on the
condition number of the transformation matrix. To test the theo-
retical framework, we compared the noise performances of differ-
ent DTI schemes using Monte-Carlo computer simulations and
experimental DTI measurements. Both the simulation and the
experimental results confirmed that the noise performances of
different DTI schemes are significantly correlated with the condi-
tion number of the associated transformation matrices. We there-
fore applied numerical algorithms to optimize a DTI scheme by
minimizing the condition number, hence improving the robustness
to experimental noise. In the determination of anisotropic diffu-
sion tensors with different orientations, MRI data acquisitions
using a single optimum b value based on the mean diffusivity can

roduce ADC maps with regional differences in noise level. This
ill give rise to rotational variances of eigenvalues and anisotropy
hen diffusion tensor mapping is performed using a DTI scheme
ith a limited number of diffusion-weighting gradient directions.
o reduce this type of artifact, a DTI scheme with not only a small
ondition number but also a large number of evenly distributed
iffusion-weighting gradients in 3D is preferable. © 2000 Academic

Press

Key Words: diffusion tensor imaging; optimization; noise; con-
ition number.

INTRODUCTION

Diffusion tensor imaging (DTI) is an exciting new techniq
(1–5) for the assessment of white matter structural integrity
connectivity. The diffusion of water molecules in brain tis
is significantly hindered by the presence of cell membra
myelin sheaths surrounding axons, and other structures. T
particularly true in white matter tracts where diffusion para
to axons and myelin bundles is three to five times faster
diffusion perpendicular to the axons, renderingin vivo water
diffusion highly anisotropic. The diffusion tensor contains
3401090-7807/00 $35.00
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formation about both the direction and the magnitude o
striction, and several quantitative and absolute measures c
determined and mapped, such as the mean apparent dif
coefficient (mean ADC, trace/3) and the degree of anisot
(e.g., fractional anisotropy, FA).

Diffusion tensor imaging has great potential as a too
neurological research and clinical applications. Water pr
diffusion anisotropy abnormalities have been reported
variety of disorders: stroke (6), schizophrenia (7, 8), alcohol-
ism (9), developmental dyslexia (10), and multiple scleros
(11, 12), as well as in normal brain development in the n
born (13, 14). In addition, recent studies have demonstrate
capability to automatically track white matter tracts using
information contained in the direction of the principal dif
sivity (15–17). However, a number of technical challen
remain in the optimization of diffusion tensor imaging. C
structing the diffusion tensor requires the acquisition of a s
of diffusion-weighted images (DWIs) with diffusion sensiti
tion along a set of six or more noncollinear gradient directi
We refer to such a set of diffusion-weighting gradients
DTI scheme, and we will focus on the optimization and
formance of different DTI schemes.

Processing of the DTI data entails three steps: (a) det
nation of six independent diffusion tensor elements in
laboratory frame from the DWIs; (b) evaluation of eigenva
(l1, l2, l3) and eigenvectors of the diffusion tensorD; and (3)
calculation of diffusion anisotropy indices defined in term
rotationally invariant eigenvalues and eigenvectors. S
DWIs typically have low signal-to-noise ratio (SNR), it
essential to minimize the noise propagation from the in
data acquisition to the final step of the procedure in ord
obtain accurate anisotropy indices. While the error prop
tions in each individual step of the DTI data processing h
been studied extensively (1, 5, 18–22), the noise performanc
of different DTI schemes used for the data acquisition ha
been systematically investigated. There is currently no qu
tative and objective measure of noise sensitivity and robus
for DTI schemes.

A number of data acquisition strategies (9, 15, 20, 23–31)
have been proposed based largely on a matter of conven
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341CONDITION NUMBER VS NOISE IN DTI
for the geometrical description of the gradient directions o
terms of gradient hardware efficiency, but their noise pe
mance is not well characterized. The methods from the li
ture that we have investigated are as follows:

1. tetrahedral, which is based on the tetrahedral me
suggested by Conturoet al. (20) and extended to six diffusio

irections by addition of thexy and xz directions (Table 1
cheme 1). Strictly speaking, this gradient configuration is
etrahedral but is termed such here for simplicity;

2. dual-gradient, which always applies gradients (9, 30, 31)
long two of the scanner axes simultaneously (Table 1, sc
);
3. decahedral, which was suggested by Skare and N

27) and is a combination of the tetrahedral and dual-gra
chemes (Table 1, scheme 3);
4. Jones’ nonisotropic (28) gradient scheme (Table

cheme 4);
5. tetraorthogonal (15), which is a combination of the te

ahedral method and the three orthogonal axes (Tab
cheme 12);
6. the method suggested by Papadakiset al. (26), based o
inimization of an “index of the DTI scheme” that is su
ested as a quantitative estimate of the independent diff
irections (Table 1, scheme 9);
7. the icosahedron scheme suggested by Muthupallaiet al.

25), in which a “figure of merit for sensitivity” based on t
ngles between the diffusion direction and fiber axis is
cribed (Table 1, scheme 11);
8. and finally Jones6, Jones10, Jones20, and Jones30,

re variations of the DTI scheme suggested by Joneset al. (24)
ith increasing numbers of diffusion directions. Joneset al.
pplied the theory behind electrostatic repulsion forces to
ulate “optimal” gradient configurations. Using a down
implex method (32), the optimal configuration ofN rods with
ositive unit charges on each end (corresponding to thN
iffusion directions) is determined by minimizing the sum

he force between every possible pair of charges (Tab
cheme 6, 7, 8, 10).

Only the first five schemes mentioned above are intuiti
nderstandable in terms ofx, y, andz, but all schemes includ

ing two additional schemes developed for this study (desc
under Methods) are listed in Table 1.

In this study, the noise propagation characteristics of
schemes are analyzed using the fundamental Stejskal–T
equation (33) characterizing the MRI signal in diffusio

eighted imaging experiments. We demonstrate that the
ensitivity of a DTI scheme is determined by the condi
umber of the transformation matrix relating the diffus

ensor elements to the measured ADC. For the first
umerical algorithms based on minimization of the cond
umber are proposed to find new DTI schemes. The theor

ramework is tested by systematic comparison with noise
ormance of different DTI schemes using Monte-Carlo si
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ations and experimental MRI measurements. Both the s
ation and the experimental results demonstrate that the
erformance of a DTI scheme is significantly correlated

he condition number of the associated transformation m
es.
In addition to the choice of gradient directions, the ratio

he number of images without (S0) and with (Sb) diffusion
gradients is of importance and has been a subject of discu
(24, 34, 35). For isotropic samples or measurements of a s
ADC value (34, 35), a ratio of 1:3.6 appears to be optim
whereas a ratio of 1:5.6 was shown to be optimal for anis
pic samples by Joneset al. (24). In this study, we have focus

n the effect of diffusion directions, and we have there
hosen a ratio of 1:6, which is close to the optimal 1:5.6, fo
TI schemes in order to obtain a fair comparison betw
chemes.

THEORY

Transformation Matrix for a DTI Acquisition Scheme

For a pulsed gradient spin-echo MRI experiment with
appropriate pulse sequence designed to eliminate imagin
dient “cross-talk” effects (36), extending the Stejskal–Tann
(33) equation in three dimensions and accounting for diffu

nisotropy, the MRI signal intensity,Si , observed experime-
tally is described as

Si 5 S0exp~2bg i
T z D z gi!, [1]

whereS0 is the signal intensity in the absence of any diffus
weighting gradient,D is the representation of the diffusi
tensor in the laboratory frame,

D 5 SDxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

D , [2]

and gi 5 ( gix giy giz)
T is the unit column vector of th

diffusion-weighting gradient specifying the gradient orie
tion in the laboratory frame. The scalarb value is a function o
the magnitude and timing of the diffusion-weighting gradi
For example, a pair of rectangular diffusion-weighting grad
pulses with amplitudeG, durationd, and separation interval
D yieldsb 5 g 2d 2(D 2 d/3)G2 (g is the proton gyromagnet
ratio). Introducing the following six-dimensional vectors,

X 5 ~d1 d2 d3 d4 d5 d6!
T 5 ~Dxx Dyy Dzz Dxy Dxz Dyz!

T,

[3]

and

a i 5 ~ gix
2 giy

2 giz
2 2gixgiy 2gixgiz 2giygiz!

T, [4]
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342 SKARE ET AL.
Eq. [1] can be rewritten as

Si 5 S0exp~2ba i
TX ! or a i

TX 5 ln~S0/Si!/b 5 ADCi.

[5]

In Eq. [5] a logarithmic transformation is performed on

TAB
A List of Diffusion Schem

1. Tetrahedral 2. Cond6
0.000 0.000 0.000 0.000 0.000 0.00
0.577 0.577 0.577 0.755 0.260 0.60

20.577 20.577 0.577 20.479 0.711 0.515
0.577 20.577 20.577 20.394 20.630 0.669

20.577 0.577 20.577 20.616 0.262 0.743
0.707 0.707 0.000 0.558 20.741 0.375
0.707 0.000 0.707 20.954 20.067 0.292

5. Dual gradient 6. Jones (N 5 10)
0.000 0.000 0.000 0.000 0.000 0.00
0.707 0.707 0.000 0.000 0.000 0.00
0.707 0.000 0.707 1.000 0.000 0.00
0.000 0.707 0.707 0.678 0.735 0.00
0.707 20.707 0.000 20.556 0.504 0.661
0.707 0.000 20.707 0.672 20.733 0.106
0.000 0.707 20.707 20.012 20.801 0.598

20.680 20.310 0.664
20.045 20.011 0.999
20.024 0.966 0.257

9. Papadakis 0.458 0.521 0.72
0.000 0.000 0.000 0.658 20.250 0.710
0.000 0.000 0.000
0.755 0.260 0.602
0.024 20.341 0.940
0.212 0.849 0.485 10. Jones (N 5 6)

20.479 0.711 0.515 0.000 0.000 0.00
20.394 20.630 0.669 1.000 0.000 0.00
20.616 0.261 0.743 0.446 0.895 0.00

0.558 20.740 0.375 0.447 0.275 0.85
20.954 20.067 0.292 0.448 20.723 20.525

0.862 20.402 0.309 0.447 20.724 0.526
0.230 0.207 0.951 20.449 20.277 0.850

20.788 20.615 0.035
20.035 20.990 0.139

12. Tetraortho
11. Muthupallai 0.000 0.000 0.00

0.000 0.000 0.000 0.577 0.577 0.57
0.851 0.526 0.000 20.577 20.577 0.577
0.000 0.851 0.526 0.577 20.577 20.577
0.526 0.000 0.851 20.577 0.577 20.577
0.851 20.526 0.000 1.000 0.000 0.00
0.000 0.851 20.526 0.000 1.000 0.00

20.526 0.000 0.851 0.000 0.000 1.00
measured signal and the noise distribution in ADC is
strictly Gaussian at low SNR (36, 37). For the simulatio
tudy discussed below, Gaussian distributed noise wa
ectly added to the complex signal intensity (18, 37). In the

theoretical analysis of noise propagation from ADC toX, no
assumption is imposed for the noise distribution, and

1
nvestigated in This Work

3. Decahedral 4. Jones noniso
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000

0.577 0.577 0.577 0.000 1.000 0
20.577 20.577 0.577 0.000 0.000 1.0

0.577 20.577 20.577 0.707 0.707 0.00
20.577 0.577 20.577 0.707 0.000 0.70

0.707 0.707 0.000 0.000 0.707 0
0.707 0.000 0.707 0.577 0.577 0.5
0.000 0.707 0.707
0.707 20.707 0.000
0.707 0.000 20.707

0.000 0.707 20.707

8. Jones (N 5 30)
7. Jones (N 5 20) 0.000 0.000 0.00

0.000 0.000 0.000 0.000 0.000 0
0.000 0.000 0.000 0.000 0.000 0
0.000 0.000 0.000 0.000 0.000 0
1.000 0.000 0.000 0.000 0.000 0
0.336 0.942 0.000 1.000 0.000 0

20.405 0.606 0.685 0.166 0.986 0.0
0.825 20.513 20.236 20.110 0.664 0.74
0.006 20.363 0.932 0.901 20.419 20.110

20.811 20.287 0.510 20.169 20.601 0.781
0.852 20.320 0.414 20.815 20.386 0.433

20.240 0.959 0.149 0.656 0.366 0.6
0.835 0.272 0.478 0.582 0.800
0.009 20.904 0.427 0.900 0.259 0.3

20.063 20.812 20.580 0.693 20.698 0.178
20.269 20.390 20.881 0.357 20.924 20.140
20.422 20.624 0.658 0.543 20.488 20.683
20.601 0.779 20.177 20.525 20.396 0.753
20.516 0.086 20.852 20.639 0.689 0.34
20.790 20.607 0.087 20.330 20.013 20.944

0.729 20.181 20.661 20.524 20.783 0.335
0.265 20.096 20.960 0.609 20.065 20.791

20.561 20.701 20.440 0.220 20.233 20.947
20.405 0.631 20.662 20.004 20.910 20.415

20.511 0.627 20.589
0.414 0.737 0.53

20.679 0.139 20.721
13. DSM (N 5 6) 0.884 20.296 0.362

0.000 0.000 0.000 0.262 0.432
0.910 0.416 0.000 0.088 0.185 20.979
0.000 0.910 0.416 0.294 20.907 0.302
0.416 0.000 0.910 0.887 20.089 20.453

0.910 20.416 0.000 0.257 20.443 0.859
0.000 0.910 20.416 0.086 0.867 20.491

20.416 0.000 0.910 0.863 0.504 20.025
LE
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343CONDITION NUMBER VS NOISE IN DTI
nonlinear transformation introduced in Eq. [5] should h
no effect on the analytical results. To solve forX, at least six
independent ADCi measurements using noncollinear gra-
ents are required. For measurements using a gener
DTI scheme withN $ 6 different gradient directions, w
can define a vector

ADC 5 ~ADC1 ADC2· · ·ADCN! T [6]

nd aN 3 6 matrix

A 5 ~a1 a2· · ·aN! T. [7]

We have

A X 5 ADC . [8]

Since each DTI scheme contains at least six noncoll
gradients, the rank of matrixA is equal to 6 andX can be
uniquely determined. The matrixA is solely dependent on t
directions of the diffusion-weighting gradients and is refe
to as the transformation matrix for the corresponding
scheme.

Error Propagation from ADC Measurements
to Tensor Elements

WhenN . 6, Eq. [8] is overdetermined and the pseu
inverse of the transformation matrix,A 21, can be compute
using the singular value decomposition algorithm. IfX is the

xact solution corresponding to the exactADC values an
X* is the calculated solution from Eq. [8] corresponding
the measuredADC* values with experimental errors, t

rrors forX and ADC are DX 5 iX 2 X9i and DADC 5
iADC 2 ADC9i, respectively. Ifi z i represents the norm
a vector or matrix (38), we have

DX 5 A 21DADC , iDX i # iA 21iiDADC i [9]

ADX 5 DADC ,
iDADC i

iA i # iDX i. [10]

herefore,

iDADC i
iA i # iDX i # iA 21iiDADC i. [11]

By the same reasoning used to derive Eq. [11], we have

iADC i
iA i # iX i # iA 21iiADC i. [12]
e

ed

ar

d
I

-

It follows from Eqs. [11] and [12] that

1

iA iiA 21i
iDADC i
iADC i #

iDX i
iX i # iA iiA 21i

iDADC i
iADC i .

[13]

he scalar quantityiAiiA21i is called the condition number
matrix A (38) and is denoted by cond(A). Thus

1

cond~A !

iDADC i
iADC i #

iDX i
iX i # cond~A !

iDADC i
iADC i . [14]

This expression relates the relative error in the diffusion te
elements,e x 5 iDXi/iXi, to the relative error in the AD
measurements,eADC 5 iDADCi/iADCi. If the condition num-
ber is close to 1,e x will be close toeADC. If the condition
number is large, the relative error in the estimated diffu
tensor elements could be several times larger than the e
mental errors inADC. Thus, cond(A) depends only on th
directions of diffusion-weighting gradients and can be us
quantitative and objective measure of noise performance
given DTI scheme. For isotropic diffusion, the experime
error, eADC, is the same at a givenb value irrespective of th
directions of the applied diffusion-weighting gradients.
anisotropic diffusion,eADC is likely to vary with the direction
of the applied diffusion-weighting gradients, if we use
sameb value optimized on the basis of the mean ADC
normally practiced. Not only the condition number of
transformation matrix but also the variations ofeADC must be
taken into consideration in the minimization ofe x. This point
will be further discussed below.

METHODS

Algorithm to Find New DTI Schemes with Lower
Condition Numbers

Using the condition number of the transformation matri
a measure of noise performance, we developed a num
algorithm to search for new DTI schemes with lower condi
numbers. The essential part of the algorithm consists
downhill simplex minimization procedure (32) to search fo

rientation angles that reduce the condition number. The
ithm is initiated by (a)N noncollinear gradient vectors of t
ame length in 3D spherical coordinates usingN azimuth and
levation angle pairs (i.e., 2N dimensions) and (b) a simplex

2N 1 1 dimensions of a certain size. The transforma
matrix and its corresponding condition number were then
culated according to their definitions. The iteration
stopped when reductions in the conditional number were
than 10212 or when the number of minimization cycles-
ceeded 50,000. The latter termination criteria never did o
Two thousand different initial simplex sizes and different
tial gradient vector sets were used, all resulting in the s
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344 SKARE ET AL.
optimized condition number. Optimization was performed
N 5 6, 10, 20, 30, and 40.

The minimization algorithm was computationally intens
o improve efficiency the algorithm was implemented in
sing routines fromNumerical Recipes in C(39) rather than

using the built-in optimization toolbox in MATLAB (Th
MathWorks, Inc.). The computations were performed on
Ultra Enterprise 250 server (Sun Microsystems, Moun
View, CA). The schemes that were found by this down
simplex minimization are referred to as DSM schemes.

Monte-Carlo Simulations of DTI Schemes

In order to verify the theoretical relationship between
noise performance and condition number of the transform
matrix (Eq. [14]), 13 different DTI schemes were investiga
by Monte-Carlo simulations for different degrees of diffus
anisotropy and tensor orientations. Besides the DTI sch
found in the literature (9, 15, 20, 23–31), the optimized DSM
schemes discussed above and another artificially constr
scheme (referred to as cond6) with condition number 6
included in the simulations to cover a wide range of cond
numbers. The gradient configuration, condition number,
literature references for each DTI scheme are listed in T
1 and 2, sorted according to descending condition numbe
shown in Table 2, most of the schemes have relatively s
condition numbers whereas the tetrahedral scheme (sche
has the highest condition number.

In all simulations, a “rice-shaped” diffusion tensor ellips
was assumed such that the tensor possessed axial sym
(l1 $ l2 5 l3). Four different degrees of anisotropy with rat
of l1/l2 5 1, 1.25, 4, and 10 were studied, while keep
l2/l3 5 1. The average eigenvaluel# 5 (l1 1 l2 1 l3)/3 was
et equal to 1.03 1029 m2/s for all simulations, a valu

comparable to the mean ADC in normal brain parench

TABLE 2
A List of Investigated DTI Schemes and the Condition Numbers

of Associated Transformation Matrices

Scheme
number Scheme name

Literature
reference

Condition
number

1 Tetrahedral (20) 9.1479
2 Cond6 (29) 5.9888
3 Decahedral (27) 2.7487
4 Jones noniso (28) 2.5616
5 Dual-gradient (9, 30, 31) 2.0000
6 Jones10 (23, 24) 1.6242
7 Jones20 (23, 24) 1.6152
8 Jones30 (23, 24) 1.5945
9 Papadakis (26) 1.5872

10 Jones6 (24) 1.5826
11 Muthupallai (25) 1.5811
12 Tetraortho (15) 1.5275
13 DSM (29) 1.3228
r
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all
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a

(18, 31, 40, 41). Orientations of the simulated diffusion ten
were evenly distributed in the entire 3D space by system
cally varying the azimuth (2180° # u # 180°) and elevatio
0° # f # 90°) angles for the principal diffusion tens

directions. Two hundred different orientations were simul
for each degree of diffusion anisotropy.

Each simulation involved the recalculation of the eigen
ues and eigenvectors of a predefined diffusion tensor
introducing experimental random noise in the diffus
weighted images. The random noise was assumed to be G
ian distributed with a standard deviations 5 1/SNR. We use

NR 5 15 for all simulations, which corresponds to a typ
xperimental value.
For each degree of anisotropy and orientation the follow

rocedures were performed: (i) The diffusion tensor repre
ation, D, in the laboratory frame was calculated using
redefined diffusion anisotropy and tensor orientation an
ii) ADC i values along each gradient direction defined b

particular DTI scheme were determined from the diffus
tensor (D) and the transformation matrix (A) associated wit
the scheme according to Eq. [8]. (iii) DWI signal intensitiesS0

and Sb, were computed from the known ADCi and b values
(b 5 0 and 900 s/mm2). (iv) Gaussian-distributed rando
noise was added to the complex MRI signals. (v) No
perturbed signal intensities were used to recalculate the
contaminated ADC values from which the diffusion tensor
eigenvalues, and eigenvectors were recalculated. (vi)
tional anisotropy was evaluated according to its definition

FA 5 Î3

2

¥ i51,2,3 ~l i 2 l# ! 2

¥ i51,2,3 l i
2 , [15]

using the noise-perturbed eigenvalues of the diffusion te
The mathematical details of the above procedures are the
as those described previously (18). For each combination
anisotropy, orientation, and DTI scheme 104 repeated calcula-
tions were performed using MATLAB.

Statistical analysis of the simulation results included ev
ation of the standard deviation of the fractional anisotr
(1, 18), s(FA), and bias of the fractional anisotropy,^DFA&,
according to

s~FA! 5 Î¥ i51
M SFAi 2

1

M
¥ i51

M FAiD 2

M 2 1
[16]

^DFA& 5
1

M O
i51

M

~FAi 2 FAexpected!, [17]

here M is the number of repeated measurements usi
iven DTI scheme and FAi is the fractional anisotropy valu

determined in each measurement. The bias is defined a
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345CONDITION NUMBER VS NOISE IN DTI
difference in fractional anisotropy between the noise-free
noise-contaminated FA. The average standard deviation
bias over different degrees of diffusion anisotropy and o
tation angles were calculated for each DTI scheme.

Phantom Study

MRI measurements were performed in a water phanto
verify the simulated and theoretical results. In order to el
nate motion artifacts and match the ADC of the phantom
the value of brain ADC, starch was added to the water resu
in an ADC of 1.23 1023 mm2/s. The MRI measurements we
performed on a GE Signa 1.5-T (GE, Milwaukee, WI) who
body MRI medical scanner equipped with Echo-Speed g
ents using a diffusion-weighted spin-echo EPI (echo-pl
imaging) sequence. Imaging parameters were TE/TR5 88/
1000 ms, FOV5 200 mm, matrix size5 64 3 64, 3-mm slice
thickness, andb 5 800 s/mm2.

Depending on the DTI scheme, a different number of d
sion-weighting gradients was applied simultaneously. Co
quently, different minimum TE values can be achieved
different DTI schemes using the sameb value. However, t
facilitate the comparison between DTI schemes,T2 weighting
effects were kept constant across schemes by using the
mum TE that satisfied all schemes.

For diffusion schemes with more than six diffusion-weig
ing gradient directions, the data acquisition was longer
usually produced diffusion tensor measurements of highe
curacy due to an averaging effect. For quantitative compa
between the different DTI schemes, additional averaging
performed for schemes with a lower number of diffus
directions, so the total number of MRI measurements
approximately the same for all schemes. The ratio of acq
tions atb 5 0 andb 5 800 s/mm2 was kept approximately
1:6. Further details of data acquisition for each scheme
shown in Table 3.

The standard deviation in pixelj can be estimated fromM
repeated sessions according to Eq. [16]. Although the nu
of diffusion-weighting gradient directions is different for ea
DTI scheme (Table 3), about 140 images per scheme
collected. To avoid a long data acquisition time (espec
important for the subsequent volunteer study) the experim
design outlined in Table 3 was only repeated twice (M 5 2).
To enhance the statistical power, the average value ofs j(FA)
over all pixels in an ROI covering the entire phantom on
imaged slice was calculated as

^s~FA!& 5 O
j51

K

s j~FA!/K, [18]

hereK is the number of pixels within the ROI. Here, an R
n the center of the phantom containingK ' 1000pixels was
hosen. Theoretically, the fractional anisotropy of the isotr
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hantom is zero. Using FAexpected 5 0 in Eq. [17], it is also
possible to calculate the average bias,^DFA&, for the phantom

uman Study

Finally, MRI measurements for each DTI scheme w
erformed in five healthy volunteers using the same sequ
nd MRI scanner described above. One axial slice throug
orpus callosum was acquired for each subject. The DWI
cquisition parameters were TE5 95 ms, FOV5 240 mm

matrix size5 1283 128, 4-mm slice thickness, andb 5 1000
/mm2. As for the phantom, averaging was performed to k

the total number of images constant across schemes (Ta
To reduce respiratory artifacts, peripheral gating was

for the human study. The data were acquired using a
trigger delay of 400 ms after theR-peak and TR5 4 3 RR. To
reduce head motions between the repeated measureme
subjects were stabilized with foam padding fit tightly in
head coil. Eddy current effects in the diffusion-weighted
ages were corrected using the unwarping method describ
de Crespigny and Moseley (42) prior to calculation of ADC
maps.

As described for the phantom experiment, the experim
design detailed in Table 3 was repeatedly measured in
separate sessions from which the average standard dev
^s(FA)&, in an ROI encompassing the entire brain (within
lice) was calculated. This resulted in a total scan tim
pproximately 2 h for each subject. Both the diffusion ten
rientation and the degree of diffusion anisotropy at diffe

ocations of the brain are usually different. The spatially a
ged standard deviation̂s(FA)& described above reflects t

average noise performance for each scheme over a wide
of diffusion anisotropy and tensor orientation.

TABLE 3
MRI Data Acquisition Parameters Used for the Phantom and

Human Studies

DTI
scheme

Number of
directions

S0

measurements
Measurement

averaging
Total No. of DWI

measurements

1 6 1 20 140
2 6 1 20 140
3 10 2 12 144
4 7 1 18 144
5 6 1 20 140
6 10 2 12 144
7 20 3 6 138
8 30 5 4 140
9 10 2 12 144

10 6 1 20 140
11 6 1 20 140
12 7 1 18 144
13 6 1 20 140

Note.For each DTI scheme, about the same number of images (;140) were
ollected by adjusting the number of repeated measurements according
umber of diffusion-weighting gradient directions in each scheme.
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It is important to realize that time and spatial averaging
only equivalent when the system is ergodic and the numb
samples (K) is large. In our study, it was not practica
easible to do a large number of time samples (M) due to
estraints on the total scan time per volunteer. We ther
ely on using a large number of samples. The number of p
nside the brain available for spatial averaging was about
depending on the brain size), which was of the same ord
agnitude as the number of repeated simulations perform

he time domain. Since the true fractional anisotropy in
rain is unknowna priori, it is impossible to make a reliab

TAB
Diffusion Gradient Schemes Found by the Optimization of C

N 5 6 N

0.910 0.416 0.000 0.995
0.000 0.910 0.416 0.029
0.416 0.000 0.910 20.128
0.910 20.416 0.000 0.978 2
0.000 0.910 20.416 20.085 2

20.416 0.000 0.910 20.887 2

N 5 10

0.541
0.443
0.971

0.997 0.047 20.063 0.459 2
0.479 0.842 0.248 0.389 2

20.299 0.549 0.780 0.602 2
0.716 20.698 0.028 20.287 2
0.001 20.864 0.504 20.807

20.805 20.230 0.547 20.162 2
20.026 20.191 0.981 20.328 2
20.003 0.997 0.071 0.552

0.235 0.058 0.970 0.320 2
0.897 0.014 0.441 20.037 2

N 5 20

20.657
0.362

20.686
0.999 20.013 0.044 0.977 2
0.139 0.989 0.048 20.014

20.273 0.292 0.917 20.110
0.905 20.421 20.049 0.192 2
0.063 20.201 0.977 0.988

20.853 20.268 0.449 0.193 2
0.959 20.054 0.277 0.005

20.241 0.961 0.137 0.873
0.875 0.217 0.433

20.043 20.923 0.382
20.025 20.897 20.442
20.224 20.332 20.916
20.282 20.639 0.716
20.589 0.807 20.043
20.342 20.047 20.938
20.858 20.512 0.049

0.796 20.205 20.569
0.226 20.060 20.972

20.342 20.928 20.151
20.383 0.586 20.714

Note.The results are shown for five DSM schemes with number of d
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stimate of the measurement bias for each DTI scheme
he in vivo data.

RESULTS

Minimization of Condition Number

All DSM schemes (N 5 6, 10, 20, 30, and 40) we
typically obtained in less than 10 min. The condition num
for the DSM schemes does not change withN but always
reaches 1.3228, which is close to the ultimate theoretical

4
dition Number Using the Downhill Simplex Method (DSM)

30 N 5 40

.079 0.068 0.995 0.078 0

.995 0.097 0.030 0.995 0
33 0.836 20.128 0.533 0.83
6 0.068 0.978 20.196 0.067
2 0.770 20.084 20.633 0.770
5 0.385 20.887 20.256 0.385

86 0.687 0.542 0.486 0.6
89 0.121 0.442 0.889 0.1
03 0.125 0.971 0.203 0.1
7 0.051 0.459 20.887 0.052
2 20.132 0.390 20.911 20.132
0 20.614 0.602 20.511 20.614
7 0.863 20.288 20.417 0.862

66 0.166 20.807 0.566 0.16
9 20.964 20.162 20.208 20.965
7 0.226 20.328 20.917 0.227

.019 20.834 0.551 0.019 20.834
6 20.946 0.320 20.048 20.946
2 20.185 20.038 20.982 20.185

93 20.695 20.657 0.291 20.695
20 0.443 0.361 0.821 0.4
64 20.709 20.685 0.162 20.710
1 0.129 0.977 20.171 0.130

29 0.973 20.013 0.229 0.97
60 20.959 20.108 0.260 20.960
1 0.340 0.194 20.920 0.340

053 20.146 0.988 0.053 20.145
7 0.978 0.193 20.079 0.978

961 20.275 0.005 0.962 20.275
.459 20.166 0.873 0.458 20.167

0.997 0.048 20.063
0.479 0.842 0.2

20.299 0.549 0.78
0.716 20.697 0.028
0.001 20.863 0.505

20.804 20.230 0.548
20.025 20.190 0.981
20.003 0.997 0.07

0.234 0.059 0.97
0.897 0.013 0.44

sion encoding directionsN 5 6, 10, 20, 30, and 40.
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0.17
0.2
0.2
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347CONDITION NUMBER VS NOISE IN DTI
imum of 1. The gradient vectors are listed in Table 4 for e
N. The gradient configuration forN 5 6 is also detailed i

able 1 together with other schemes found in the literatu
Varying the starting scheme and the initial conditions ha

mpact on the final result when the iteration steps were s
iently large. Furthermore, results from minimization w
mallerN were always contained in the results with largeN.

Simulations

As expected from Eq. [14], the error propagation of a
scheme is highly correlated with the condition number of
associated transformation matrix (r 5 0.997, P , 0.001)

hen all DWIs were acquired using the sameb value. The
ransformation matrix for the tetrahedral scheme (20) has the
argest condition number (9.1479) among the DTI sche
tudied and the correspondings(FA) for the scheme is also t

highest. This is demonstrated in Fig. 1, which showss(FA) as
a function of condition numbers for different DTI schem

FIG. 1. Standard deviation of the fractional anisotropy,s(FA), as a
unction of condition number. For each diffusion tensor imaging schem
imulation results averaged over four different degrees of diffusion aniso
nd 200 different tensor orientations are shown. The line denotes the
egression analysis ofs(FA) against the condition number of the associ

transformation matrix for each DTI scheme (r 5 0.997 andP , 0.001). To
better visualize the data for low condition numbers, the lower plot show
data at another scale.
h

o
fi-
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The simulation results demonstrate significantly narrower
dispersion ranges for DTI data acquisition schemes
smaller condition numbers.

In addition to the propagation of experimental error,
noise-induced bias (5) is also an important characteristic for
performance of a DTI scheme. Similar to the standard d
tion results, the bias of the fractional anisotropy is also sig
icantly correlated with condition number. This is demonstr
for the isotropic case in Fig. 2a, which shows the average
of the fractional anisotropy,̂DFA&, as a function of conditio

umber for the simulated data.
However, the standard deviation of the fractional anisotr

s(FA), depends significantly on the relative orientation
tween the diffusion-weighting gradient and the principal
envector of the diffusion tensor. This is illustrated in Fig
which depicts the standard deviation of the fractional an
ropy as a function of azimuth and elevation angles of
principal tensor direction for three DTI schemes (Tetrahe

e
py
ear

e

FIG. 2. The bias of the fractional anisotropy^DFA& in the isotropic wate
phantom as a function of condition number. The results from Monte-C
computer simulations (a) and experimental MRI measurements (b) are s
The lines denote the linear regression analysis of^DFA& against the conditio
number of the associated transformation matrix for each DTI scheme.
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348 SKARE ET AL.
Jones6, and Jones30). Comparing Figs. 3a and 3b, both
ences in the average^s(FA)& and degree of rotational varian
are clearly observable between the results for the tetrah
and Jones6 schemes. Only the scheme Jones30 (Fig. 3
duces low and rotational invariants(FA). Comparison of th
DSM schemes with the Jones schemes with the same nu
(N) of diffusion-weighting directions reveals that the Jo
schemes are still superior in terms of lowering noise and

Phantom Study

The correlation between̂s(FA)& and the condition numb
hat was demonstrated using simulated results is also evid
he phantom data (Fig. 4). As the condition number is red
rom 9.15 for the tetrahedral scheme to 1.32 for the D
cheme, the standard deviation of the fractional anisotropy
educed by a factor of 2. These results agree well with
heoretical prediction that the condition number of the as
ted transformation matrix sets both the lower and the u
rror limits for the diffusion tensor when the experime
oise level for ADC is constant.
The correlation of the average fractional anisotropy
ith the condition number is also verified in the phantom d
ig. 2b. The results from simulations (Fig. 2a) and phan
easurements (Fig. 2b) are in good agreement, althoug

imulation results have a higher correlation coefficient (0
ersus 0.972).

uman Study

Finally, data from the healthy volunteers show the s
orrelation between the average^s(FA)& and the conditio

number as the simulations and the phantom measurement
5 (r 5 0.980). Thenoise performance of different D
schemes can also be qualitatively demonstrated by the q
of anisotropy maps measured using different schemes. Fig

FIG. 3. Standard deviation of the fractional anisotropy,s(FA), as a func
(a) has a substantially higher condition number. The Jones6 (b) and Jo
gradient directions. FA gives a rotational invariant measure of diffusion
of diffusion-weighting gradient directions is used.
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Fig.

lity
e 6

shows a representative set of fractional anisotropy maps
sured in a normal subject using four DTI schemes with sig
icantly different condition numbers: tetrahedral (a), DSM
Jones6 (c), and Jones30 (d). Although the total number of
data acquisitions used for each scheme was nearly ide
(see Table 3), the maps from the four schemes show
differences in SNR, indicating that the robustness to n
propagation is very different for these schemes.

Compared with DTI schemes with condition numbers c
to 1.5, the tetrahedral scheme has a high condition numb
9.148 and produces a much noisier fractional anisotropy
with poor resolution. Irrespective of the different degree
anisotropy between regions of the main corpus callosum s

of tensor orientation for three different DTI schemes. The tetrahedral s
30 (c) have similar condition numbers but a different number of diffusioighting
sotropy only when a DTI scheme with a low condition number and a larber

FIG. 4. The spatially averaged standard deviation of the fractional an
ropy, ^s(FA)&, versus condition number as measured in an isotropy w
phantom using different DTI schemes. Results from an ROI in the center
phantom containing approximately 1000 voxels are shown. The line sho
linear regression analysis of^s(FA)& against the condition number of t
associated transformation matrix for each DTI scheme (r 5 0.987 andP ,

.001).
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349CONDITION NUMBER VS NOISE IN DTI
tures and cortical gray matter, the entire map has a g
appearance with discontinuous anisotropy variations.

In contrast, other FA maps showed clearly defined an
ropy structure with uniform and smooth anisotropy variati
Comparing results for schemes with similar condition n
bers, the contrast between the strongly anisotropic white m
structures and low anisotropic cortical gray matter is fur
enhanced (Figs. 6b–6d) with the increased number of d
sion-weighting gradient directions.

DISCUSSION

In this study the noise performance of different DTI sche
was investigated by theoretical analysis and experimenta
idation. Assuming that all DWI acquisitions use a single o
malb value based on the mean diffusivity, the determinatio
the diffusion tensor is treated as a system of linear equa
The condition number of the transformation matrix, whic
solely dependent on the orientations of the diffusion-weigh
gradients, defines the lower and upper bounds of the
propagation from the experimental measurements to the
mated diffusion tensor parameters. We have identified
condition number of a DTI as an intuitive and objective m
sure of the noise performance for the DTI scheme. A com
ison of different DTI schemes found in the literature us
computer simulations and MRI experimental measurem
has demonstrated that both the standard deviation and th
of the estimated anisotropy are proportional to the cond
number. Commonly used schemes (9, 15, 20, 23–31) differ
significantly in noise performance because the associated
formation matrices have different condition numbers. In

FIG. 5. The spatially averaged standard deviation of the fractional an
ropy, ^s(FA)&, versus condition number as measured in five normal hu
subjects using different DTI schemes. The average result from all pixels
the brain of the imaged slice is shown. The line denotes the linear regr
analysis of^s(FA)& against the condition number of the associated tran

ation matrix for each DTI scheme (r 5 0.980 andP , 0.001).
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ticular, the tetrahedral scheme with the highest condition n
ber produces the noisiest anisotropy maps.

However, the condition number alone does not fully c
acterize the robustness of a DTI scheme. For isotropic d
sion, each ADC is expected to produce the same error
spective of the direction of the diffusion-weighting gradie
For anisotropic diffusion, however, ADC measurements u
the sameb value will produce DWIs with SNR values depe
ing on the relative orientation between the principal direc
of the diffusion tensor and the diffusion-weighting gradi
Consequently, the errors in the calculated diffusion anisot
not only are a function of the condition number but also
dependent on the relative orientation between the diffu
weighting gradient and the principal eigenvector of the d
sion tensor. DTI schemes with a large number of unifor
distributed diffusion-weighting gradients can reduce this
of noise-induced rotational variance. Thus, for schemes
comparable condition number, the number of diffusion di
tions is also a critical factor. This is very clearly demonstr
by the comparison between Jones6 (Fig. 3b) and Jones30
3c) schemes. Although the two schemes have an almost
tical condition number, the noise performance for vary
orientations of the diffusion tensor is quite different. A uni
of feature of the Jones schemes is that the diffusion-weig
gradients are always uniformly distributed in the entire
space irrespective of the total number of diffusion-weigh
gradients used. Schemes with a low number of diffus
weighting gradients cannot produce robust rotation inva
measurements of eigenvalues and anisotropy in the prese
experimental noise. Increasing the number of diffusion-we
ing gradient directions as in the Jones30 scheme (23) greatly
reducess(FA) and its dependence on the orientations of
diffusion ellipsoid.

For the first time, we show that a numerical algorithm ca
used to optimize DTI schemes based on minimization o
condition number of the transformation matrix. This has
advantage of high reliability and efficiency in the design
DTI experiment. At present, DTI schemes with a condi
number as low as 1.3228 were found and the schemes de
strate good noise behavior compared to other DTI sch
with low condition numbers. The downhill simplex algorith
itself does not guarantee that the complexN-dimensional min
imization process will encounter a global minimum (32, 39),
but a few aspects of the minimization result indicate that
result is probably a global minimum: (1) The condition num
of 1.3228 is close to the ultimate theoretical minimum of
(2) Restarting the minimization routine using the claimed m
imum vertices does not produce different results. (3)
results from lower dimensional minimization with smallerN is
always contained in the results with largerN. (4) The condition
number does not change withN. Using the minimization of th
condition number as a theoretical guide, the necessary c
tion of robustness to experimental noise can be guarante
the scheme.
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350 SKARE ET AL.
To our surprise, the DSM schemes were not as robust a
Jones schemes in terms of orientation independence. W
tribute this to a tendency in the optimization algorithm to fa
the orthogonal axes (x, y, and z) as opposed to a unifor
distribution in the entire 3D space, which is a unique featu
the Jones schemes. It is not clear to us why the optimiz
algorithm favors the orthogonal axes, but this trend is app
upon visual inspection of the gradient distribution.

FIG. 6. A representative set of fractional anisotropy maps measure
(a), DSM (b), Jones6 (c), and Jones30 (d) schemes are shown. The ex

OV 5 240 mm, andb 5 1000 s/mm2. The spatial resolution was 43 1.9
as about 140 scans.
the
at-
r

of
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nt

In the search for optimal scheme, a low standard devi
and bias in the calculated diffusion tensor are prerequisite
the production of accurate anisotropy maps (1, 5, 18–22). For
anisotropic diffusion with different diffusion tensor orien
tions in the same measurement volume, using a singleb value
for multiple directions is likely to produce ADC maps w
regional differences in experimental noise levels (18). We have
demonstrated this type of noise-induced rotational vari

a normal subject using four different DTI schemes. The results for the
rimental parameters used for MRI measurements were TE5 95 ms, TR5 4 3 RR,
.9 mm. The total number of imaging data acquisitions used for each s
d in
pe
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351CONDITION NUMBER VS NOISE IN DTI
using simulations of a rice-shaped tensor (Fig. 3). The s
conclusion should also hold for other tensor shapes, sinc
[14] is valid for the general case.

In addition to the condition number, the accuracy of
diffusion tensor measurements is also determined by the
level of the ADC maps. Due to the presence of different te
orientations, two DTI schemes with a similar condition num
but a different gradient configuration can produce ADC m
with significantly different noise levels if a single optimumb
value is used. Only when noise levels in ADCs measuredN
noncollinear direction are identical is the error propaga
from eADC to eX solely determined by the condition number
the transformation matrix. An effective approach to red
noise-related rotational variance is to use schemes with
form and redundant DWI sampling. The use of such a sch
will achieve not only better SNR but also higher cont
between structures with different anisotropy and orientati

For further investigations in finding the optimum D
scheme additional constrains may be incorporated into
minimization procedure, such as uniform gradient distribu
and simultaneous application of multiple gradients to minim
TE. Further, the algorithm can also be directly applied
s(FA) instead of the condition number. This might be m
computationally intensive but feasible.

CONCLUSION

The condition number of the transformation matrix of a D
scheme, which determines the sensitivity of error propaga
from experimentally measured ADC values to the elemen
the diffusion tensor, is an intuitive and objective predicto
the noise performance of the DTI scheme. Results from
ulations and MRI measurements are consistent with the
retical predictions. The minimization of the condition num
can be used as a guide to search for new DTI schemes.

For measurements of diffusion tensor with different or
tations as in the brain, diffusion-weighted MRI data acqu
tions using a single optimumb value based on the me
diffusivity can produce an ADC map with regional differen
in noise levels. This will give rise to a rotational variance
eigenvalues and anisotropy when diffusion tensor mappi
performed using DTI schemes with limited number of di
sion-weighting gradient directions. To reduce this type
artifact, a DTI scheme with not only a small condition num
but also a large number of evenly distributed diffusion-wei
ing gradients in 3D is the preferred method.
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